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We study the thermodynamics and the properties of the stationary points(saddles and minima) of the
potential energy for af4 mean-field model. We compare the critical energyvc [i.e., the potential energyvsTd
evaluated at the phase transition temperatureTc] with the energyvu at which the saddle energy distribution
show a discontinuity in its derivative. We find that, in this model,vc@vu, at variance to what has been found
in different mean-field and short ranged systems, where the thermodynamic phase transitions take place at
vc=vu [Casetti, Pettini and Cohen, Phys. Rep.337, 237 (2000)]. By direct calculation of the energyvssTd of
the “inherent saddles,” i.e., the saddles visited by the equilibrated system at temperatureT, we find that
vssTcd,vu. Thus, we argue that the thermodynamic phase transition is related to a change in the properties of
the inherent saddles rather than to a change of the topology of the potential energy surface atT=Tc. Finally, we
discuss the approximation involved in our analysis and the generality of our method.
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I. INTRODUCTION

The investigation of the topological properties of the po-
tential energy surface(PES) of liquids and disordered system
[1] has been strongly revitalized in recent years[2–8]. These
studies have been particularly focused on the connection be-
tween the slow dynamics of supercooled liquids and the
properties of the stationary points of the potential energy
function Vsqd, qi si =1, . . . ,Nd being the set ofN generic
configurational variables.

In the first approaches on studying the slow dynamics of
supercooled liquids and glasses the objects of the investiga-
tions were the properties—energy locationsvmd, curvature
svmd, etc.—of the minima of the PES that are “visited” by
the system during its evolution at a given thermodynamic
state. Assigning to each minimum its basin of attraction, one
obtains a partition of the configurational phase space: to each
instantaneous configurationq, whose instantaneous potential
energy isv=Vsqd /N, one associates an “inherent” configu-
ration qm, whose potential energy isvm=Vsqmd /N. This al-
lows one to define a configurational entropy of the minima
and a free energy for the supercooled and for the out-of-
equilibrium glassy regime[9]. These properties of the
minima of the PES were then connected to several features
of supercooled liquids and glasses. Among them, we mention
the fragility of the glass former[6,10,11], the diffusion pro-
cesses in supercooled liquids[7,12–14], and the effective
fluctuation-dissipation temperature[16] in the out-of-
equilibrium glassy phase[15].

More recently this minima-based approach has been ex-
tended to consider also the other stationary points of the
PES, namely, the saddle points. Using the saddle-based ap-
proach, it has been shown in Lennard-Jones-like liquids
[17,18] and inp-spin mean-field systems[19] that the “order
of the inherent saddles”(i.e., the number of negative eigen-
values of the Hessian matrix evaluated at the saddle points
visited during the equilibrium dynamics at temperatureT)

extrapolates to zero whenT reaches the dynamic transition
temperatureTMCT (or mode-coupling temperature[22]).
While the definition of “basin of attraction of a saddle” and
the operative way to associate a saddle point with the instan-
taneous configuration of the system—i.e., the way to associ-
ate a saddleqs [with energyvs=Vsqsd /N] with each instan-
taneous configurationq (with energy v)—have been the
subject of debate[23–25], the previous result has been
shown to be robust and the method has been applied to other
model systems[25–28]. In the following we will call a
“map” the function that associates the thermal average of
vs=Vsqsd /N with its parentv=Vsqd /N, i.e., for eachT, if
vsTd is the average potential energy andvssTd the average
potential energy of the saddle visited at temperatureT, then
the map is the functionM such thatvssTd=M(vsTd). Until
now, two different operative definitions of the saddle to be
associated with an instantaneous configuration(two different
maps) have been used.(1) In the numerical simulations of
simple models, such as Lennard-Jones systems, a partition-
ing of the configuration space in basins of attraction of
saddles is obtained via an appropriate functionWsqd [usually
Wsqd= u¹qVsqdu2] that has a local minimum on each station-
ary point of Vsqd, and the saddles are then obtained via a
minimization ofWsqd starting from an equilibrium configu-
ration obtained from a molecular dynamics simulation at
temperatureT [17,18]. (2) In the analytic computations ap-
plied to disordered mean-field spin models one looks at the
saddles that are closest, with respect to the distance in the
configuration space, to a reference configuration extracted
from the Gibbs distribution at temperatureT [19]. In one
specific case, the only one where this test has been per-
formed, the two definitions have been proven to give identi-
cal results[8]. However, there are—to our knowledge—at
least two other possible definitions of “basin of attraction of
a saddle” that have never been tested in numerical simulation
[20,21], and the problem of the proper definition of the
saddles’ basin is still open.
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The role of the stationary points of the PES(saddles and
minima) has been also pointed out in a different context.
Recent studies aiming to clarifying the microscopic origin of
thermodynamicphase transitions suggest that the presence
and order of such transitions are related to changes in the
topology of the manifold of the PES sampled by the system
when crossing the critical point. More specifically the topol-
ogy change is signaled by a discontinuity in(one of) the
derivatives of the Euler characteristic. This function, deter-
mined by counting the number and the order of the stationary
points of the PES, is a genuine topological property of the
constant potential energy submanifold, and, in particular, it
does not depend on the statistical measure defined on it(i.e.,
on temperature).

Before proceeding it is worth observing that the Euler
characteristicxsvd (that is used in the topological studies of
the phase transitions) and the complexity of minima and
saddles(which is the basic quantity in the investigation of
the role played by the stationary points of the PES in deter-
mining the slow dynamics in disordered systems) have simi-
lar definitions. WithNnsvd the number of stationary pointsqs

of ordern (minima for n=0 and saddles fornù1) that have
potential energyVsqsdøNv, we can define the energy distri-
bution of the stationary points

Vsvd = o
n

Nnsvd, s1d

and the Euler characteristic

xsvd = o
n

s− 1dnNnsvd. s2d

It is clear that these two definitions are similar, but not coin-
cident. Specifically, asNnsvd is usually exponentially large
in the size of the systemN, Vsvd can be evaluated at the
saddle point inn, thus defining an ordern̄svd that dominates
in Eq. (1), while this procedure may not apply toxsvd where
large cancellations can arise from the terms−1dn. The com-
plexity (or configurational entropy) ssvd is defined as the
logarithm of the number of stationary points whose energy
lies in fv ,v+dvg:

ssvd =
1

N
logSdVsvd

dv
dvD ,

1

N
log Vsvd s3d

where the last approximation is promptly obtained recalling
thatVsvd,exp Nssvd is exponentially large inN. This scal-
ing is not always found for the Euler characteristic which, at
variance withssvd, can scale withN in many different ways
[29]. We will further discuss this point in the following.

Following the numerical results obtained in[29] on thef4

model with nearest neighbor interactions in two and three
dimensions, a theorem that relates the topological properties
of the PES to the thermodynamic phase transitions has been
recently demonstrated by Franzosi and Pettini for systems
with generic short range interactions[30]. Though the theo-
rem strictly applies to non-mean-field systems, the mean-
field models examined so far seem to indicate the existence
of a topology-thermodynamics relation for mean-field sys-
tems as well. In the(mean-field) XY model the(second or-

der) phase transition, which takes place at a temperatureTc
when the system is visiting the PES level given byvc
=vsTcd, is signaled by a discontinuity in the first derivative
of the Euler characteristicxsvd at v=vc [31]. In the
k-trigonometric model there is a phase transition, which is
second order fork=2 and first order fork.2. For all k
values, the phase transition is seen in the topology via a
discontinuity in the first derivative ofxsvd at vc, and the
curvature ofxsvd aroundvc gives also information on the
order of the transition[32]. A detailed review of the previous
results can be found in[33].

To summarize the previous paragraph, it seems that the
relation between topology and thermodynamics is a general
properties, being demonstrated for short range systems and
tested via explicit computation ofxsvd for mean field system.
There is, however, a simple counterexample: the mean-field
f4 model[34–36]. In Ref.[36] it was observed that, for large
value of the coupling parameters( J in the following nomen-
clature), the phase transition(second order, ferromagnetic-
like) takes place at a temperatureTc where the equilibrium
potential energy valuevc is larger than the energy of the
higher energy stationary point, i.e., wherexsvd=1 due to the
Morse theorem[37] and, therefore, no discontinuity ofxsvd
can be present. At this stage of the discussion it is worth
pointing out a feature that is common to all the mean-field
cases(XY andk-trigonometric for anyk) where the topology-
thermodynamics relation holds. Indeed, in these cases the
energy of the “inherent” saddle visited by the system atTc
[i.e., vssTcd] coincides with the instantaneous potential en-
ergy vsTcd. In other words, for these systems,vc is a fixed
point for the mapM :Msvcd=vc. Thus, the observed discon-
tinuity of the derivative ofxsvd at vc cannot discriminate
between the two possibilities:(i) is the discontinuity in the
topological propertiesat the instantaneouspotential energy
that marks the phase transition, or(ii ) is the discontinuity in
the topological propertiesat the inherent saddlespotential
energy that marks the phase transition. Thef4 model does
not share this peculiarity with the other investigated mean-
field models, and can be therefore used to solve the ambigu-
ity. While the Franzosi-Pettini theorem for non-mean-field
systems seems to favor the possibility(i), the f4 model in-
dicates that(i) is not applicable in mean-field systems. It is
the aim of this work to test whether the possibility(ii ) holds.

In this paper we first study the thermodynamics of the
(symmetric) f4 model for different value of the coupling
parameterJ (the only independent parameter of the model),
in order to individuate the temperaturesTcd and potential
energysvcd location of the second order ferromagnetic phase
transition. We then calculate the complexity of the stationary
points of Vsqd, namely,ssvd, and we show that—at allJ
values—the discontinuity of the derivative ofssvd is found
at a valuesvud which is always belowvc. Finally, we calcu-
late the energyvs of the inherent saddles[and thus the map
vs=Msvd] in two different ways[minimization ofWsqd and
lowest Euclidean distance], and we find that—within the
small discrepancy existing between the maps determined in
the two ways—the values ofMsvcd is very close tovu. The
latter result indicates that on looking at the discontinuities of
(the derivative of) the stationary points complexity one actu-
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ally find a signature of the phase transition, but this signature
is seen at the potential energy level of the “inherent” saddles,
not at the instantaneous potential energy value. In other
words, similar to what happens for the slow dynamics of
disordered systems, it seems that are inherent saddle proper-
ties that determine the phase transitions in mean-field sys-
tems.

The paper is organized as follows: in Sec. II we present
the model and its thermodynamical behavior; in Sec. III we
study the properties of the stationary points of the potential
energy and calculate their complexity; in Sec. IV and V we
study the properties of the inherent saddles. Finally, we draw
the conclusions.

II. THE MODEL

Thef4 mean-field model describesN soft spinsfi with a
mean-field ferromagnetic interaction. Its thermodynamics, as
well as its Langevin and Newton dynamics, have been stud-
ied in the literature; see, e.g., Ref.[35]. The model is defined
by the (configurational) Hamiltonian

H = o
i

hsfid −
J

2N
so

i

fid2 = o
i

hsfid −
JNm2

2
,

hsfd = −
f2

2
+

f4

4
, s4d

wherefi are real continuous variables and the magnetization
m is defined asm=N−1oi fi. Its thermodynamics can be ex-
actly solved, as usual in mean-field models, in the thermo-
dynamic limit. Defining

Dfi = dfi expf− bhsfidg, s5d

the partition function is given by

ZNsTd =E dfi e−bHsfd =E Dfi expFb
J

2NSo
i

fiD2G
= NE dm ebJNm2/2E DfidSNm− o

i

fiD
= Ns2pd−1E dm dm̂ebJNm2/2+iNmm̂

3E Dfi expS− im̂o
i

fiD
= Ns2pd−1E dm dm̂e−bNfsm,m̂d s6d

having defined

fsm,m̂d = −
Jm2

2
− iTmm̂− T logE df e−bfhsfd+im̂Tfg.

s7d

In the thermodynamic limit the free energy is obtained by
evaluating the integral in Eq.(6) at the saddle point:

fsTd = − T lim
N→`

N−1 log ZNsTd = max
m,m̂

fsm,m̂d. s8d

The saddle point equations can be written as

Jm= − iTm̂,

m=E df Psfdf = kflH, s9d

where we defined the single-particle Hamiltonian and the
related Gibbs distribution

Hsfd = hsfd − Jmf,

Z =E df e−bHsfd,

Psfd =
e−bHsfd

Z . s10d

Having solved the self-consistency equation for the magne-
tization msTd, m=kflH, the free energy is given by Eq.(8)

fsTd =
Jm2

2
− T log Z. s11d

As expected, the model undergoes a second order phase tran-
sition from a paramagnetic( m=0) high-temperature phase
to a ferromagneticsmÞ0d low-temperature phase. To find
the critical temperature one has to expand the self-
consistency equation for the magnetization in powers ofm:

m=
E df f e−bhsfd+bJmf

E df e−bhsfd+bJmf

= bJm
E df f2 e−bhsfd

E df e−bhsfd

+ osm3d

= Am+ osm3d. s12d

The transition temperatureTcsJd is defined by the condition
A=1, which gives

Tc = J
E df f2 e−bchsfd

E df e−bchsfd

. s13d

The equilibrium potential energy is then given by

vsTd =
dfbfsTdg

db
=

Jm2

2
+E df Psfd Hsfd. s14d

We will be interested in the average potential energy at the
transition temperature, which—recalling thatmsTcd=0—is
given by
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vc = vsTcd =
E df hsfde−bchsfd

E df e−bchsfd

. s15d

The behavior of the critical energy as a function of the cou-
pling J is reported in Fig. 7 below.

III. TOPOLOGICAL PROPERTIES OF THE ENERGY
SURFACE

In this section we will study the properties of the station-
ary points (saddles) of the potential energy surface of the
system, defined by the Hamiltonian(4). We will now focus
only on the topological properties of the saddles, while in
Sec. IV we will study the properties of the saddles sampled
by the system equilibrated at temperatureT. Similar results,
although obtained with a different procedure, have been dis-
cussed in Refs.[34,36].

A. Stationary points

The stationary pointsfs are defined by the condition
¹Hsfsd=0, and their ordern is defined as the number of
negative eigenvalues of the Hessian matrix Hi jsfsd
= us]2H /]fi ]f jdufs. To determine the location of the station-
ary points we have to solve the system

] H

] f j
= − f j + f j

3 − Jm= 0 ∀ j . s16d

We want to classify the stationary points ofH according to
their magnetizationm and their energyv=Hsfsd /N. Thus, in
Eq. (16) we will consider the magnetizationm as a constant;
this is exact in theN→` limit. Defining a=Jm and a0
=2/3Î3, the solutions of the equationf3−f=a are given by

f+sad =
2
Î3

cos
csad

3
,

f0sad = −
2
Î3

cos
csad + p

3
,

f−sad = −
2
Î3

cos
csad − p

3
,

csad = tan−1sa−1Îa0
2 − a2d, s17d

and are such thatf0s0d=0, f±s0d= ±1. Fora= ±a0 we have
f7=f0, while for uau.a0 two solutions become complex
and only one solution can be accepted.

We will now restrict ourselves to the caseuau,a0, and at
the end we will discuss the caseuauùa0. The stationary
points ofH are obtained by plugging a fractionn+=N+/N of
the fi in fi =f+sad, a fraction n0=N0/N in f0sad, and a
fraction n−=N−/N in f−sad. Then, the energyv of the sta-
tionary point is given by Eq.(4):

v =
Hsf̄d

N
= o

j

njhsfjsadd −
a2

2J
s18d

wherej=s−,0, +d. We can now determine thenj by impos-
ing the constraints

1 =o
j

nj,

a = Jm= Jo
j

nj fjsad,

v = o
j

nj hsfjsadd −
a2

2J
. s19d

The latter is a linear system that can be easily solved for any
value ofv, a; one must then impose the additional constraint
njP f0,1g that restricts the allowed values ofa and v.
At given energy, we will have an intervala
P faminsvd ,amaxsvdg of allowed values of the magnetization.
Recalling that a permutation of thefi does not change either
the magnetization or the energy of the stationary point, the
number of stationary points of magnetizationa and energyv
is simply given by

dN
dv

sa,vd =
N!

N+ ! N0 ! N−!
, exp Nssa,vd,

ssa,vd = lim
N→`

N−1 log
dN

dv
sa,vd = − o

j

nj log nj. s20d

To compute the order of the stationary point, we need the
expression of the Hessian matrix. It is given by

Hi j = s3fi
2 − 1ddi j −

J

N
. s21d

In the thermodynamic limit it becomes diagonal,

Hi j = s3fi
2 − 1ddi j . s22d

One cannota priori neglect the contribution of the off-
diagonal terms to the eigenvalues of H, but one can prove
[36] that their contribution changes the sign of at most one
eigenvalue out ofN. Neglecting the off-diagonal contribu-
tions, one can easily realize that the number of negative ei-
genvalues of Hi j is given by the number offi =f0sad; then
n=Nn0sa ,vd. To summarize, we obtained the following re-
sults for uau,a0.

(i) The stationary points are classified according to their
magnetizationm=a /J and their potential energyv: from
Eqs. (19) one can determine the fractionnjsa ,vd of
fi =fjsad.

(ii ) The number of stationary points of magnetizationa
and energyv is given by expNssa ,vd, where ssa ,vd
=−oj njsa ,vdlog njsa ,vd.

(iii ) The stationary points of magnetizationa and energy
v have ordern=Nn0sa ,vd.

We will now consider the casea=a0 (the casea=−a0
gives the same results from symmetry arguments). The equa-
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tion f3−f=a0 admits only two solutions, namely,f+
=2/Î3 andf0=−1/Î3. Thus, in this case, we impose only
the first two constraints:

1 =o
j

nj = n0 + n+,

a0 = Jo
j

njfj = − J
n0

Î3
+ J

2n+

Î3
,

from which we getn0= 2
3s1–1/3Jd andn+= 1

3s1+2/3Jd. Note
that from the conditionn0,n+P f0,1g these stationary points
exist only forJù1/3. Their energy is given by

v0sJd = −
1

6
S1 +

5

9J
D . s23d

These stationary points are characterized by an extensive
number(n0N) of zero eigenvalues of the Hessian matrix as-
sociated withfi =f0. The remaining eigenvalues are positive
as they are associated withfi =f+.

Finally, we consider the casea.a0. In this case, there is
only one real and positive solutionf+ of the equationf3

−f=a; then fi =f+ for all i and from the self-consistency
equationa=JN−1oi fi =Jf+ we get

f+
3 − f+ = Jf+ s24d

so that f+=ÎJ+1. Finally, we have to check thata
=JÎJ+1.a0, and this happens only forJ.1/3. Thus, these
two points(the latter and the similar one with negative mag-
netization) exist only forJ.1/3 and represent the absolute
(magnetic) minima of the system. Their energy is given by
vM =−s1+Jd2/4.

B. Configurational entropy

The configurational entropyssvd of the stationary points
is defined in Eq.(1). It can be written as

ssvd = N−1logE
aminsvd

amaxsvd

da eNssa,vd

= maxaPfaminsvd,amaxsvdgssa,vd. s25d

We will neglect the contribution coming from the absolute
minima (their number being nonextensive) and from the
points witha=a0 as they exist only for a particular value of
v at which—as we will see—ssvd displays a singular behav-
ior. Then, for any given energyv we can findāsvd such that
]s /]a=0 andssvd=s(āsvd). Correspondingly, we can de-
fine the average saddle ordern̄svd=n0sā ,vd.

C. Euler characteristic

The Euler characteristic is defined in Eq.(2) and can be
written as

xsvd =E
−`

v

duE
amsud

aMsud

da eNfssa,ud+ipn0sa,udg, s26d

recalling that n=Nn0sa ,ud is the order of the stationary
points of magnetizationa and energyu. One can attempt to

calculate the integral via the saddle point approximation: one
has then to find the stationary points of the function

fsa,ud = ssa,ud + ipn0sa,ud s27d

with respect to the variablesa and u. Moreover,a and u
must be considered as complex variables as the functionf
has a nonvanishing imaginary part. However, in the model
under discussion, at least at lowv, the saddle point either
does not exist or is not on a path going fromamin to amax on
which Re f is smaller than its value at the saddle point. Thus,
we expect logxsvd to be nonextensive at lowv; in this case
the saddle point approximation is not useful to evaluatexsvd
and one must take into account the strong cancellations be-
tween addends in Eq.(2). This point needs further investiga-
tion and we will not discuss it here. However, we stress that
ssvd is probably very different fromxsvd at least at low
energy.

D. Summary of the results

We will now summarize the topological behavior of the
model at different values ofJ. All the results have been ob-
tained by solving numerically the equation]s /]a=0 to cal-
culateāsvd and substituting it in the explicit expressions for
all the other interesting quantities.

A first qualitative change in the topology is found atJ1
=1/3, while a second is atJ2=2. We will now analyze in
some detail the three regions of couplings: weaksJ,J1d,
intermediatesJ1,J,J2d, and strongsJ.J2d.

1. Weak coupling

In Fig. 1 we report the investigated quantities forJ
=1/6,J1. In the top panel we report, as a function of the
energyv, the minimum and maximum allowed values ofa
(dashed lines), together with the valueāsvd determined by
the maximization ofssa ,vd (full line). Above v=−1/4,
amin=0, while belowv=−1/4, the paramagneticsa=0d sta-
tionary points disappear andamin.0. In thisJ,1/3 region
we haveamax,a0 for any v. In the central panel we report
the saddle order as a function of the energy. Above
v=−1/4 there are no minimasnmin.0d while below
v=−1/4 minima and saddles coexist. The absolute minima
are atvM ,−0.34, wherenmax→0. Thus, there exist saddles
of order n.0 arbitrarily close(in energy) to the absolute
minima. In the bottom panel we report the configurational
entropy as a function ofv. From the top panel we see that
there exists a valuevu.−1/4 (marked by the arrow) above
which āsvd=0 while for v,vu we haveāsvd.0. At the
same energy the configurational entropy displays a singular-
ity, but only in its second derivative; indeed, we have[recall-
ing that, by definition ofāsvd, s]s /]ad(āsvd ,v)=0]

ds

dv
=

] s

] v
„āsvd,v… +

] s

] a
„āsvd,v…

dā

dv
=

] s

] v
„āsvd,v…,

d2s

dv2 =
]2s

]2v
„āsvd,v… +

]2s

] a ] v
„āsvd,v…

dā

dv
, s28d

so that the first derivative ofs is smooth while its second
derivative is singular due to the singularity indā /dv at vu.
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The curvess0,vd is reported as a dashed line. Note that even
if for vM ,v,−1/4 there exist stationary points with frac-
tional ordern /N=0, we haven̄svd.0.

2. Intermediate coupling

In Fig. 2 the same quantities of Fig. 1 are reported for
J1øJøJ2=2 (namely,J=1). Again, we have a singularity at
vu.−1/4 whereā become different from 0. Moreover, in
this region, the points witha=a0 appear: as we can see from
the upper panel, bothamax and ā move towarda0 for v
→v0. At v=v0, we find ā=a0; then for v,v0 ā starts to
decrease. The configurational entropy(lower panel) shows
two singular points, the first atvu and the second atv0. In the
central panel the order of the saddles is reported. In this case,

the minima are located atvM =−1, well separated from the
lowest order saddles. Then, in this case, a gap between the
absolute minima and the lowest order saddles opens andn̄svd
goes to zero at a valuev.vM.

3. Strong coupling

At J2=2 a third singularityv2,v0,vu appears, below
which ā=0 and again the paramagnetic saddles dominate. In
Fig. 3 we report the results forJ=3.J2. We note that in this
region we always haveamin=0, while ā is zero forv.vu,
increases towarda0 for v0,v,vu, and then decreases again
and reaches zero atv=v2, as previously discussed. The con-
figurational entropy then follows thea=0 curve apart from
the intervalfv2,vug in which it shows the additional singu-
larity at v0. In the inset of the lower panel we show the
behavior ofssvd in the intervalfv2,vug. Again the absolute
minima are at very low energysvM =−4d and are well sepa-
rated from the lowest order saddles.

FIG. 1. Topological properties of the energy surface forJ
=1/6. Toppanel: maximum and minimum allowed values for the
magnetization of the saddles as a function of their energy(dashed
lines) and the valueāsvd (full line) that corresponds to the maxi-
mum configurational entropy. Central panel: the maximumnmaxand
minimum nmin allowed values for the order of the saddles as a
function of their energy(dashed lines) and the valuen̄svd (full line)
that corresponds to the maximum configurational entropy. Bottom
panel: total configurational entropy of the saddles as a function ofv.
For these values ofJ there is only one singularityvu below which
āÞ0.

FIG. 2. Topological properties of the energy surface forJ=1.
The plots are the same as in Fig. 1. In this region a second singu-
larity v0 appears whereā=a0. Below v0 ā decreases again untilv
reaches its lowest possible value. In this region, the absolute
minima are far below the minimum energy of the saddles and are
not reported in the figure(see text).
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E. Discussion

As we discussed in the Introduction, it has been conjec-
tured and verified in many different models[33] that topo-
logical singularities could be related to thermodynamic sin-
gularities(phase transitions) or dynamic singularities(glass
transitions). We showed that the model has a very complex
topological behavior. In particular, forJ,J1 there is only
one singularity atv=vu below which the saddles are charac-
terized by a “spontaneous magnetization;” forJ1,J,J2 an-
other singularity appears atv=v0,vu; the latter is due to the
presence, atv=v0, of points with magnetizationa=a0, char-
acterized by a large number of zero eigenvalues of the Hes-
sian matrix. ForJ.J2, a third singular pointv2, below which
the paramagnetic saddles again dominate, appears. However,
for our discussion onlyvu will be relevant, as it represents
the energy below which the saddles withaÞ0 become
dominant, and hence could be expected to be related to the

thermodynamical phase transition. If this is the case, one
could expect the thermodynamical critical energyvc to be
close tovu.

In Fig. 7 below we reportvu (full line) as a function of the
couplingJ together with the thermodynamical critical energy
vc (dot-dashed line). One immediately notices thatvc is far
abovevu, at variance to what is found in the previously in-
vestigated mean-field models[31,32] ; moreover, at highJ
one hasvc.0 while there are no stationary points of the
Hamiltonian at positive energy, as already recognized in Ref.
[36]. From this argument one concludes that, to relate the
phase transition to changes in the topology of the PES one
has to generalize in a suitable way the relationvc,vu found
in [31,32]. This will be the aim of the next section.

IV. INHERENT SADDLES

Recent works established that, in order to describe the
equilibrium dynamics at a given temperatureT, it is suffi-
cient to know the properties of some of the stationary points,
which have often been called “inherent saddles”[17–19,27].
To locate these particular stationary points, two main strate-
gies have been adopted in the past:(1) partitioning the phase
space in “basins of attraction” of stationary points via an
appropriate function that has a local minimum on each sta-
tionary point; (2) defining in a proper way a “distance” in
phase space and, given an equilibrium configuration, looking
at the stationary point that has minimum distance from this
configuration. It has been shown in[8] that, at least in a
simple mean-field model, these two definitions give exactly
the same result. In this section, we will discuss the properties
of the inherent saddles using definition(2), which is more
suitable for analiytical calculations, and later compare the
results with the one obtained using definition(1).

To calculate the average energy and magnetization of the
closest saddles to equilibrium configurations, we will make
use of the method introduced in[19]. We compute the quan-
tity

SsT;vs,dd =
1

N
E dfi

e−bHsfd

ZsTd
logSE dci d„Hscd − Nvs…

3d„]iHscd… udet Hscdu d„d2 − d2sf,cd…D
where Hi j =]i] jH is the Hessian matrix anddsf ,cd is a dis-
tance function between the two configurationsfi andci. The
argument of the logarithm is the number of stationary points
of energyvs and distanced from the reference configuration
f (see Refs.[8,19] for a detailed discussion). Then the loga-
rithm of this number(divided by N) is averaged over the
equilibrium distribution at temperatureT of the reference
configuration. To find the closest saddles to equilibrium
configurations—at given temperatureT—we must find the
minimum d such thatSsT;vs,ddù0 (otherwise the number
of saddles at distanced is zero). The conditionSsT;vs,dd
ù0 will define a domainD+ in the svs,dd plane. We have
then to find the minimumdsTd of d in D+. Usually, this will
correspont to a single value ofvs, which will be calledvssTd
and represents the energy of the closest saddles. Note also

FIG. 3. Topological properties of the energy surface forJ=3.
The plots are the same as in Fig. 1. As in the previous figures there
are two singularities ofssvd at vu andv0. Moreover, in this region
a third singularityv2 appears below which againā=0. As in Fig. 2,
the absolute minima are not reported in the figure. In the inset of the
lower panel the region of the three singularities is magnified: one
sees thatssvd is different from ssa=0,vd only in the intervalv
P fv2,vug.
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that the pointsvssTd ,dsTdd will be on the border of the do-
mainD+ that is defined by the conditionSsT;vs,ddù0; thus
SsT;vssTd ,dsTdd=0 [19,8].

In our model the distance function can be defined as

d2sw,cd =
1

No
i

sfi − cid2. s29d

The direct calculation ofSsT;vs,dd is reported in the Appen-
dix. There we show that the energy, distance, and magneti-
zation of the closest saddles as a function of the temperature
are given by the solution of the following equations:

a = JE df Psfd f̃sf,ad = fsa,Td,

d2sTd =E df Psfd ff̃sf,ad − fg2,

vssTd =
a2

2J
+E df Psfd H„f̃sf,ad…, s30d

where the functionf̃sf ,ad is equal to thefjsad such that
sfjsad−fd2 is minimum, andP has been defined in Eq.(10).
The first equation has to be interpreted as a self-consistency
equation fora whose solution is the magnetizationassTd of
the inherent saddles. SubstitutingassTd in the second and
third equations one gets the average distancedsTd between
equilibrium configurations and inherent saddles and the av-
erage energyvssTd of the inherent saddles. Finally, substitut-
ing assTd and vssTd in the expression for the number of
saddles and for their order derived in Sec. III we get the
configurational entropyssTd and the ordernssTd of the in-
herent saddles:

ssTd = S„assTd,vssT…d,

nssTd = n0„assTd,vssTd…. s31d

Note that ssTd should not be confused with
s(T;vssTd ,dsTd)=0. In fact, the latter is the number of
saddles of energyvs subject to the additional constraint of
having distanced from the equilibrium configurations, while
the first is simply the number of saddles of energyvs and
magnetizationas.

A. Properties of the inherent saddles

We will now discuss the properties of the inherent saddles
in the weak and strong coupling regimes. We numerically
solve the first of Eqs.(30) to get assTd, and from the other
two we get all the quantities of interest.

1. Weak coupling

The behavior of the investigated quantities as a function
of the temperature forJ=1/6 isreported in Fig. 4. In the top
panel, the magnetizationassTd=JmssTd of the closest saddles
is reported together with the thermodynamic magnetization
JmsTd. We notice thatmssTd,msTd: thus, the system visits

saddles that have a magnetization very similar to the equilib-
rium one. At low temperature, the system stays very close to
the absolute minima(whose magnetization is reported as a
dotted line) even if it reaches them only atT=0. In the cen-
tral panel, we report the energyvssTd of the inherent saddles
(dotted line) and the equilibrium energyvsTd (full line). At
T=Tc, bothvsTd andvssTd show a singular behavior. We can
observe that, in the present model, the saddle energy atTc is
smaller than the equilibrium energy, i.e.,vssTcd
=Msvcd,vc. This finding is at variance with theXY and
k-trigonometric models where one findsMsvcd=vc [8]. We
observe that the value ofvssTcd, for J=1/6, turns out to be
vssTcd=−0.212, very close tovu=−0.226. At low temperature
vssTd is very close to the energy of the absolute minima.
Finally, in the lower panel, we report the saddle indexnssTd.
From the inset we see that, forT,0, nssTd has an Arrhenius
behavior,nssTd,exps−D /Td [8].

FIG. 4. Properties of the inherent saddles forJ=1/6 at different
temperaturesT. Top panel: magnetizationassTd of the closest
saddles and magnetizationJmsTd of the equilibrium configurations.
Central panel: thermodynamical energyvsTd and energyvssTd of
the closest saddles. The arrows graphically show the mappingM of
the istantaneous energy into the inherent saddles energy. Bottom
panel: saddle ordernssTd. In the inset, logns is reported as a func-
tion of T−1 to enhance the low temperature Arrhenius behavior,
log ns=−D /T.
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2. Intermediate coupling

In the intermediate and strong coupling regimessJ.1/3d
the topology of the PES is very complicated, as we showed
in the previous section(see Figs. 2 and 3). In particular, in
this region the minima are separated from the lower energy
saddles by a gap and two(or three) topological singularities
appear. In Fig. 5 we report as an example the behavior of the
magnetization, energy, and order of the inherent saddles as a
function of the temperature forJ=1. We see that as in the
weak coupling regime the system samples nonmagnetized
saddles aboveTc while below Tc one hasassTdÞ0. How-
ever, at a given temperatureT* the system jumps discontinu-
ously into the minima: belowT* the saddle order is exactly
0, the energy isvssTd=vM =−s1+Jd2/4 and the magnetiza-
tion is as=JÎ1+J. On increasingJ, T* moves towardTc.
Note that there is no qualitative difference between the inter-
mediatesJ,2d and strongsJ.2d coupling as the low energy
saddles that are slightly below the gap are never visited by
the system.

B. Mapping the instantaneous energy into the inherent saddles
energy

As we discussed in the previous section, the equilibrated
system at temperatureT is close to saddles that have energy
vssTd,vsTd, wherevsTd is the thermodynamical energy. We
can construct the functionM that maps the instantaneous
energyv into the inherent saddles energyvs=Msvd using
the temperature as a parameter. The functionM is reported
in Fig. 6 as a function ofv for selectedJ values. To check
whether the energy of the inherent saddles atTc is close to
the singularityvu, we need to computevssTcd=Msvcd. We
can obtain an explicit expression forvssTcd recalling that, for
TùTcsJd, we havemsTd=0, andHsfd=hsfd. It is easy to
see from Eq.(30) that m=0 implies assTd=0. Thus, in the
paramagnetic phase the inherent saddles are always para-
magnetic and their energy is given by the simple expression

vssT ù Tcd = −
1

411 −

E
−1/2

1/2

df e−bhsfd

E
−`

`

df e−bhsfd 2 . s32d

The energy of the saddles sampled atTc is simply given by
the latter expression calculated inT=Tc. The energy of the
inherent saddles at the critical temperature as a function ofJ
is reported in Fig. 7 .

C. Discussion

As we showed in Sec. III, for the model investigated here,
the energy at which the configurational entropy of the
saddles shows a singularitysvud is different from the energy
at which the thermodynamical transition takes placesvcd (see
Fig. 7). Recent studies of the dynamics of glassy systems
[17–19] demonstrated that the equilibrium properties at tem-
peratureT (and energyv) are related to the topological prop-
erties of the PES at energyvs=Msvd, i.e., the energy of the
inherent saddles. If this is the case, one should expect the

FIG. 5. Properties of the inherent saddles forJ=1 at different
temperaturesT. The plots are the same as in Fig. 4. In the strong
coupling regime the system jumps discontinuously in the minima at
temperatureT* (marked by black dots in the figure).

FIG. 6. The functionMsvd that associates with the thermody-
namic energyv the corresponding inherent saddle energyvs for
different values ofJ. The system follows theJ=0 curve in the
paramagnetic phase while belowTc the inherent saddles have lower
energy with respect to that visited atJ=0. At T=0 the system is in
the minima andvs=Msvd=v (dotted line). For J.1/3 the system
jumps discontinuously into the minima at a certain energyv*

=vsT*d (full dot in the figure).
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phase transition to happen when the energy of the inherent
saddles(and not the thermodynamical energy) is close to the
singularityvu of ssvd. Indeed, as we can see from Fig. 7, the
relation Msvcd,vu holds, even if not exactly. This result,
the main finding of the present work, generalizes the relation
vc,vu, discussed in Refs.[31–33,30] for cases where
Msvcd,vc, to the present case whereMsvcdÞvc.

To better understand the origin of the small difference
betweenMsvcd andvu, in Fig. 8 we report(for J=1/6) the
saddle order as a function of the saddle energy for(i) the
saddles that dominate in the configurational entropy and(ii )
the inherent saddles. As we clearly see from Fig. 8, the sys-
tem is not always close to the saddles of ordern̄ that domi-
nate in the configurational entropy(in the following, domi-
nant saddles); indeed, belowTc the system start to sample
saddles that are subdominant in the configurational entropy.
However, one could expect the system to be always visiting
the dominant saddles at energyvssTd, as the number of the
dominant saddles is exponentially bigger than the number of
all the other saddles. This discrepancy can be a consequence
of an incorrect definition of the “basin of attraction” of a
saddle, i.e., of an incorrect mapping between equilibrium

configuration and inherent saddles. In the next section, we
will discuss a different definition of the basin of attraction.

Finally, we observe that the physical interpretation of the
discontinuous jump into the absolute minima that occurs for
J.1/3 is possibly related to the dynamical behavior of the
system; the clarification of this point requires then the inves-
tigation of the dynamics of the system belowTc. Unfortu-
nately, in Ref.[35] the Langevin dynamics of the system was
studied only aboveTc; the comparison of our results with the
dynamical behavior of the system requires the extension of
the calculations in Ref.[35] to the ferromagnetic phase.

V. DEPENCE ON THE DEFINITION OF BASIN
OF ATTRACTION OF A SADDLE

As discussed in the introduction of this paper and in Ref.
[8], the notion of “inherent saddles” can apriori depend on
the way one defines the relation between an equilibrium con-
figuration and the corresponding stationary point. We can try
to examine what happens if we consider the definition(1) for
inherent saddles, defining a new mapvs=MWsvd, at least in
the paramagnetic phase where the calculation is straightfor-
ward. In this phasem=0 andHsfd=hsfd. Thus the spins
behave as if they were noninteractingsJ=0d. Thus, for
T.Tc,

Wsfd = u¹Hu2 = o
i
U ] h

] f
U2

= o
i

ufi
3 − fiu2 = o

i

fi
2sfi

2 − 1d2.

s33d

The minimization ofW can be performed independently for
each degree of freedom; the initial configurationf is mapped
in a configurationfs such that

fi
s =5

1 if fi ù
1
Î3

,

0 if fi P F−
1
Î3

,
1
Î3
G ,

− 1 if fi ø −
1
Î3

.

s34d

Recalling that hs0d=0 andhs±1d=−1/4, we getsfor T.Tcd

vs
WsTd = −

1

411 −

E
−1/Î3

1/Î3

df e−bhsfd

E
−`

`

df e−bhsfd 2 , s35d

which differs slightly from the expression obtained in the
previous section[Eq. (32)]—where the definition(2) of in-
herent saddles were used—as the interval of integration is
different. Thus, the energy of the saddles sampled at tem-
peratureT depends slightly, in this model, on the definition
of closest saddles to an equilibrium configurations, i.e., on
the way one defines the basins of attraction of the saddles. In
Fig. 9 we report, in an expanded scale with respect to Fig. 7,
MWsvcd together withMsTcd and with the singularity(in an
expanded scale with respect to Fig. 7) of the configurational

FIG. 7. The thermodynamical transition pointvc=vsTcd (dot-
dashed line), the energy of the singularity ofssvd, vu (full line), and
the energy of the inherent saddles atTc, Tc=Msvcd (dashed line), as
functions of the couplingJ.

FIG. 8. Comparison between the order of the closest saddles
(full line) and the order of the dominant ones(dashed line, see text)
for J=1/6. nssTd is reported as a function ofvssTd (see Fig. 4)
parametrically inT while n̄svd is the same as in Fig. 1.
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entropyvu. We see that the difference betweenMsvcd and
MWsvcd is of the same order as the difference between
Msvcd and vu. We conclude therefore that the relation
Msvcd,vu holds within the approximations involved in the
calculation ofMsvcd.

VI. CONCLUSIONS

We characterized the properties of the stationary points of
the potential energy surface of thef4 model and we com-
pared them with the thermodynamical properties. We found
that the singularity that is observed in the configurational
entropy—not in the Euler characteristic—is located at an en-
ergy vu that is very close to the energy of the stationary
points sampled by the system around thethermodynamic
phase transition,Msvcd; we got then the relationMsvcd
,vu. In the previously investigated mean-field models
[8,31,32] it was found thatMsvcd=vc and thatvu=vc; our
result can be thought of as a generalization of the latter re-
lation to the cases where the mapM is not equal to the
identity at Tc. However, some uncertainities in the determi-
nation of bothvu andMsvcd are present. Indeed,(i) vu is not
a true topological singularity as it comes, in our analysis,
from the configurational entropy which is not a topological
invariant property of the energy surface; one should look at
the Euler characteristic[33], which is, however, very difficult
to determine in the present model due to strong cancellations
between different saddle orders; and(ii ) the exact value of
Msvcd has been shown to be slightly dependent on the way
one associates with each configuration the corresponding in-
herent saddle; in particular, we showed that two different
definitions of the inherent saddle give slightly different re-
sults, and that the difference is of the order of the difference
betweenMsvcd andvu.

The possible existence of a singularity inxsvd at the criti-
cal energyvc in the f4 mean-field model still remains an
open problem that needs further investigation. Moreover, it
seems that both the operative definitions of inherent saddle
that have been used in the literature are unable to produce the
expected relationMsvcd=vu exactly, even in such a simple

model. Thus, from the present example one should conclude
that the analysis of the thermodynamics in terms of the sta-
tionary points of the potential energy must be considered a
useful butapproximatetool, that has to be carefully used,
evaluating case by case the domain of applicability of the
method and the approximations that are necessarily involved.
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APPENDIX: CLOSEST SADDLES TO EQUILIBRIUM
CONFIGURATIONS

In this section we will derive the result presented in Sec.
IV. We have to compute the quantity

ssT;vs,dd =
1

N
E dfi

e−bH„fd

ZsT…
logE dci d„Hscd − Nvs…

3d„]iHscd… udet Hscdu d„d2 − d2sf,cd…
sA1d

where d2sf ,cd=N−1oi sfi −cid2. To do that, we need to
prove a general relation. Suppose we want to calculate at the
saddle point a quantityQ of the form

Q =
1

N
E dfi

e−bHsfd

ZsTd
log Asfd

= lim
n→0

1

Nn
SE dfi

e−bHsfd

ZsTd
Ansfd − 1D

= lim
n→0

1

Nn
logE dfi

e−bHsfd

ZsTd
Ansfd sA2d

where we used the relations logx=limn→0fsxn−1d /ng and
limn→0ffsnd−1g=limn→0log fsnd if fsnd→n→01. In mean-
field models, the energy is of the formHsfd=oi hsfid
+Ne(msfd), whereNmsfd=oi msfid [in our model,msfid
=fi]. Then we have

Q = lim
n→0

1

Nn
logE dm

e−bNesmd

ZsTd E Dfidsm− msfddAnsfd

= lim
n→0

1

Nn
logE dm dm̂

e−bNesmd

ZsTd

3E Dfi expfim̂sNm−o
i

msfiddgAnsfd

= lim
n→0

1

Nn
log

1

ZsTd E dm dm̂e−bNfesmd−Tssn;m,im̂dg

where we definedDfi =dfiexpf−bhsfidg and

FIG. 9. The energyvu (full line), the energyMsvcd of the clos-
est saddles at temperatureTc (lower dashed line), and the energy
MWsvcd of the saddles obtained by the minimization ofW starting
from an initial equilibrium configuration at temperatureTc (upper
dashed line) as functions ofJ.
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ssn;m,im̂d = m im̂+
1

N
logE Dfi expS− im̂o

i

msfidDAnsfd.

Clearly ss0;m, im̂d is the entropic contribution to the free
energy as a function ofm, m̂ that we obtain in the calculation
of the partition functionZsTd, so that

fsTd = −
1

bN
log ZsTd = min

m,m̂
fesmd − Tss0;m,im̂dg

= esmd − Tss0;m,m̂d = fs0;m,m̂d, sA3d

where (msTd ,m̂sTd) is the (T-dependent) thermodynamic
minimum of the free energy(note that at the saddle point
im̂=m̂). Then we have

Q = lim
n→0

1

Nn
logE dm e−bNffsn;m,im̂d−fs0;m,m̂dg. sA4d

We can now expandm=m+nms1d+osn2d, im̂=m̂+nm̂s1d

+osn2d, and

fsn;m,im̂d − fs0;m,m̂d =
] f

] m
s0;m,m̂dnms1d

+
] f

] im̂
s0;m,m̂dnm̂s1d +

] f

] n
s0;m,m̂dn

+ osn2d =
] f

] n
s0;m,m̂dn + osn2d

sA5d

because by definition ofsm ,m̂d, we haves]f /]mds0;m ,m̂d
=0, s]f /]im̂ds0;m ,m̂d=0. We get then the final result

Q = − b
] f

] n
s0;m,m̂d =

] s

] n
s0;m,m̂d. sA6d

We have then to calculate(neglecting the termmm̂ that van-
ishes on taking the derivative with respect ton)

ssn;m̂,vs,dd =
1

N
logE Dfi exps− oi

m̂fidp
a=1

n E dci
a

3dsHscad − Nvsd ds]iHscadd

3udetHscadu dsd2 − d2sf,cadd sA7d

where from the thermodynamic calculation(see Sec. II)
m̂sTd=−bJmsTd and msTd is given by Eq.(9). We will now
neglect the modulus of the determinant of the Hessian matrix
replacing in the latter expressionudet Hscadu with detHscad,
in order to represent the determinant as an integral over fer-
mionic variables. We will see later how to restore the correct
sign in this term. Using a superfield representation[8] we get

ssn;m,vs,dd =
1

N
logE Dfi expsbJmoi

fidp
a=1

n E dga

2p

3eNgavsE DCi
a expSE dūdu s1 − gauūd

3HsCadDdSNd2 − o
i

sfi − ci
ad2D . sA8d

We will now (i) substitute the expressionHsCad=oi hsCi
ad

−JNmsCad2/2; (ii ) insert somed functions for ma=msCad
and the corresponding integral representation with a multi-
plier m̂a; (iii ) neglect all the product and sum signs related to
the indexa; (iv) use the integral representation for thed
function of d2 with a multiplier la. Then we get an expres-
sion that has to be maximized with respect to all the param-
eters to get the saddle point value ofssn;m ,vs,dd:

ssn;m,vs,dd = max
allpar

Fo
a

gavs − o
a
E dūdu Ss1 − gauūd

Jma
2

2

− mam̂aD + o
a

lad
2 + logSsm,m̂a,ga,ladG ,

Ssm,m̂a,ga,lad =E df DCa expF− bHsfd

+ o
a
E dūdu s1 − gauūd hsCad

− o
a
E dūdu m̂aCa − o

a

lasf − cad2G
sA9d

whereHsfd=hsfd−Jmf as in Eq.(10). As usual, we will
assume that(i) there is symmetry between the replicas( ma
=m, etc.); (ii ) all the fermionic components vanish at the
saddle point. Then we get

ssn;m,vs,dd = max
allpar

HnFgSvs +
Jm0

2

2
D − Jm0m3 + m̂0m3

+ m̂3m0 + ld2G + logSsm,m̂,g,ldJ ,

Ssm,m̂,g,ld =E dfe−bHsfdFE DC expSE dūdu

3fs1 − guūdhsCd − m̂Cg − lsf − cd2DGn

.

Now we have to take the derivative ofs with respect ton at
n=0. By direct computation
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ssm;vs,dd = maxallpar
] s

] n
s0;m,vs,dd

= maxallparHFgSvs +
Jm0

2
D

− Jm0m3 + m̂0m3 + m̂3m0 + ld2G
+E df

e−bHsfd

ZsTd
logE DC expSE dūdu

3fs1 − guūdhsCd − m̂Cg − lsf − cd2DJ .

sA10d

Some of the parameters can be easily eliminated computing
the derivatives ofs; defining a=Jm0 one is left with the
following expression:

ssm;vs,dd = max
a,g,l

FgSvs −
a2

2J
D + ld2

+E df Psfd logo
j

e−gHsfjsadd−lff − fjsadg2G
sA11d

wherePsfd is defined in Eq.(10), j=s−,0, +d and thefjsad
are defined in Eq.(17). Note that in the latter expression the
term j=0 in the logarithm should have a minus sign: this is
a consequence of the absence of the modulus of the determi-
nant of the Hessian matrix that we neglected above. Taking
the modulus into account corresponds to neglecting the mi-
nus sign of the termj=0. Performing the derivatives with
respect toa, g, andl one obtains the following equations:

a = JE df Psfd o
j

Pjsf,g,ld fjsad

d2 =E df Psfd o
j

Pjsf,g,ld ff − fjsadg2

vs =
a2

2J
+E df Psfd o

j

Pjsf,g,ld Hsfjsadd sA12d

where

Pjsf,g,ld =
e−gH„fjsad…−lff − fjsadg2

oj
e−gHsfjsadd−lff − fjsadg2

. sA13d

We want now to minimized2 with the conditions=0. It is
easy to show from Eq.(A12) that s]d2/]ldø0. Then we
expect that the minimum distance is obtained in thel→`
limit (see Ref.[8] for a detailed discussion of this point). It is
easy to see that

lim
l→`

Pjsf,g,ld = xj
asfd sA14d

where the functionxj
asfd is equal to 1 iffjsad is the closest

to f and 0 otherwise. Thus, if we definef̃sf ,ad as

f̃sf,ad = o
j

xjsfdfjsad sA15d

(i.e., f̃ is the closestfj to f), in thel→` limit Eqs. (A12)
become

a = JE df Psfd f̃sf,ad

d2 =E df Psfd ff − f̃sf,adg2

vs =
a2

2J
+E df Psfd H„f̃sf,ad…. sA16d

The first of these equations has to be interpreted as a self-
consistency equation that gives the value of the magnetiza-
tion of the closest saddles to the equilibrium configurations,
assTd. The second and third equations give the average dis-
tanced2sTd and the average potential energyvssTd. Finally,
observing that

liml→`logo
j

e−gHsfjsadd−lff − fjsadg2

= − gHsf̃sf,add − lff − f̃sf,adg2 sA17d

substituting the latter expression in Eq.(A11), and using Eqs.
(A16) one obtains

lim
l→`

s = 0 sA18d

consistently with our initial assumption.
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